

This document was made using the reference documents in College Board's AP Chemistry *Course Description* and other miscellaneous sources, cited at the end of this document.

Version 1 Description (8/29/13):

- A basic skeleton to be filled in later.
- Added a few equations to the skeleton

Version 1.5 Description (3/10/14):

• Added more equations to the skeleton

Atomic Structure

E = energy v = frequency $\lambda = wavelength$ Planck's constant, $h = 6.626 \times 10^{-3}4$ Js Speed of light, $c = 2.998 \times 10^8$ m s⁻¹

Avogadro's number = $6.022 \times 10^{23} \,\text{mol}^{-1}$ Electron charge, e = $-1.602 \times 10^{-19} \,\text{coulomb}$

E = hv	
$c = \lambda v$	

Equilibrium

Equilibrium constants

 K_c molar concentration K_p gas pressures

 K_a weak acid K_b weak base K_w water

$K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$	where $a A + b B \neq c C + d D$
$K_{p} = \frac{(P_{C})^{c}(P_{D})^{d}}{(P_{A})^{a}(P_{B})^{b}}$	
$K_a = \frac{[H^+][A^-]}{[HA]}$	
$K_b = \frac{[OH^-][HB^+]}{[B]}$	
$K_w = [H^+][OH^-]$	=1.0 x 10 ⁻¹⁴ at 25°C
$= K_a \times K_b$	
$pH = -log[H^+]$	
$pOH = -log[OH^{-}]$	
14 = pH + pOH	
$pH = pK_a + log \frac{[A^{-}]}{[HA]}$	
$pK_a = -logK_a$,	
$pK_b = -logK_b$	

Kinetics

k = rate constant t = time $t_{1/2}$ = half-life

	1/2
$ln[A]_t = -ln[A]_0 = -kt$	
$\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$	
$t_{1/2} = \frac{0.693}{k}$	

Gases, Liquids, and Solutions

 $\begin{array}{lll} P = pressure & V = volume & T = temperature \\ n = number of moles & m = mass & M = molar mass \\ D = density & KE = kinetic energy & v = velocity \\ \end{array}$

A = absorbance

a = molar absorptivity b = path length c = concentration

PV = nRT	Ideal gas law: the product of pressure (P) and volume (V) is directly proportional to the product of temperature (K) and number of moles of gas molecules (mol). The constant of proportionality is R (0.0821 Leatm mol-K).
$P_A = P_{total} \times X_A $ where $X_A = \frac{moles A}{total moles}$	
$P_{total} = P_A + P_B + P_C$	
$n = \frac{m}{M}$	
K = C °+273	
$D = \frac{m}{v}$	density is mass over volume
$KE \ per \ molecule = \frac{1}{2}mv^2$	
Molarity, $M = moles \ of \ solute \ per \ liter$	
of solution	
A = abc	

Thermochemistry/ Electrochemistry

q = heat m = mass c = specific heat capacity T = temperature

 S° = standard entropy H° = standard enthalpy G° = standard free energy

n = number of moles $E^{\circ} = standard reduction potential$ I = current (amperes)

q = charge (coulombs) t = time (seconds)

Faraday's constant, F = 96, 485 coulombs per mole of electrons.

1 volt = 1 joule/ 1 coulomb

n = number of moles m = mass M = molar mass D = density KE = kinetic energy v = velocity

A = absorbance

a = molar absorptivity b = path length c = concentration

a = moial absorptivity b = p	auriengur c – concentration
q=mc∆T	
$\Delta S^{\circ} = \Sigma S^{\circ}$ products $-\Sigma S^{\circ}$ reactants	
$\Delta H^{\circ} = \Sigma H^{\circ}_{f}$ products $-\Sigma H^{\circ}_{f}$ reactants	
$\Delta G^{\circ} = \Sigma G^{\circ}_{f}$ products $-\Sigma S^{\circ}_{f}$ reactants	
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	
= <i>-RT</i> In <i>K</i>	
= - <i>n</i> FE°	
$I = \frac{q}{t}$	